skip to main content


Search for: All records

Creators/Authors contains: "Blanchard, G. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Indium tin oxide (ITO) has been extensively used as a transparent conductor. The surface chemistry of ITO is amenable to reactions similar to those used to modify silica, but a long-standing issue has been understanding the density and robustness of the ITO surface-modification. We report on the formation of chemically bound Cd2+-complexed octadecylphosphonic acid (ODPA) monolayer formed on a Langmuir trough and deposited using Langmuir−Blodgett (LB) methodology onto an ITO surface, either in its native form or functionalized with phosphonate (RPO3^2−). The organization of the Langmuir monolayer depends on the pH and presence of Cd2+ in the aqueous subphase on which it is formed and on the functionalization of the ITO surface. We probe the permeability of the resulting LB−support interface electrochemically and the motional freedom characteristic of chromophores contained within the monolayer using fluorescence recovery after photobleaching (FRAP). Our data demonstrate that without modification of the ITO surface the monolayer is significantly permeable by the electrophores used (ferrocene and Ru3+), and surface modification to produce covalently bound phosphonate functionality results in a monolayer that is impermeable to the electrophores. FRAP studies reveal a relatively rigid monolayer aliphatic chain region for deposition on either native or modified ITO, suggesting direct Cd2+−ITO interactions. 
    more » « less
    Free, publicly-accessible full text available September 14, 2024
  2. null (Ed.)
    The significance of solvent structural factors in the excited-state proton transfer (ESPT) reactions of Schiff bases with alcohols is reported here. We use the super photobase FR0 -SB and a series of primary, secondary, and tertiary alcohol solvents to illustrate the steric issues associated with solvent to photobase proton transfer. Steady-state and time-resolved fluorescence data show that ESPT occurs readily for primary alcohols, with a probability proportional to the relative –OH concentration. For secondary alcohols, ESPT is greatly diminished, consistent with the barrier heights obtained using quantum chemistry calculations. ESPT is not observed in the tertiary alcohol. We explain ESPT using a model involving an intermediate hydrogen-bonded complex where the proton is “shared” by the Schiff base and the alcohol. The formation of this complex depends on the ability of the alcohol solvent to achieve spatial proximity to and alignment with the FR0 -SB* imine lone pair stabilized by the solvent environment. 
    more » « less
  3. null (Ed.)